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Intervehicle communication enables vehicles to exchange messages within a limited broadcast range and
thus self-organize into dynamical and geographically embedded wireless ad hoc networks. We study the
longitudinal hopping mode in which messages are transported using equipped vehicles driving in the same
direction as a relay. Given a finite communication range, we investigate the conditions where messages can
percolate through the network, i.e., a linked chain of relay vehicles exists between the sender and receiver. We
simulate message propagation in different traffic scenarios and for different fractions of equipped vehicles.
Simulations are done with both, modeled and empirical traffic data. These results are used to test the limits of
applicability of an analytical model assuming a Poissonian distance distribution between the relays. We found
a good agreement for homogeneous traffic scenarios and sufficiently low percentages of equipped vehicles. For
higher percentages, the observed connectivity was higher than that of the model while in stop-and-go traffic
situations it was lower. We explain these results in terms of correlations of the distances between the relay
vehicles. Finally, we introduce variable transmission ranges and found that this additional stochastic compo-

nent generally increased connectivity compared to a deterministic transmission with the same mean.
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I. INTRODUCTION

Complex networks have drawn the attention of physicists
for a couple of years and many real-world systems have been
studied under this paradigm [1-5]. In particular, percolation
theory has been utilized [6-9] to determine the impact of
failing nodes on the overall network—either to prevent fail-
ures such as power outages or Internet breakdowns [10,11],
or to deliberately induce failures, e.g., stopping a spreading
disease by vaccination [12,13].

Another type of network relying on short-range percola-
tion is an “ad hoc” vehicular network, where nodes represent
vehicles equipped with wireless communication devices, and
edges connect vehicles that can communicate with each
other within a limited communication range. Due to the ve-
hicle movements, links in the communication network will
be broken and others generated, resulting in a dynamical
network topology. Looking at a snapshot of the network at a
given time, the geographic locations of the nodes are sto-
chastic, and, by virtue of the limited communication range,
this stochasticity carries over to the existence of links be-
tween the nodes. A second layer of stochasticity can be in-
troduced by allowing for variable communication ranges,
i.e., the maximum allowed physical distance for a link be-
tween a pair of nodes is a stochastic variable itself.

In addition to the academic allure of such a network, the
relevance of the introduced system consists in its application
to the emerging technology of ad hoc wireless networks in
individual transport, known as intervehicle communication
(IVC). Intervehicle communication has important and prom-
ising applications in traffic safety, information, and control.
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On a small scale, a vehicle involved in an accident or suffer-
ing from a breakdown might constantly send out messages
stating that there is an emergency situation, thus warning
upcoming vehicles in advance. Furthermore, with the emer-
gence of adaptive cruise-control systems (ACC) and associ-
ated sensors for the distance to the preceding vehicle,
equipped vehicles can inform their environment about the
local traffic state, and past actions (e.g., a hard braking ma-
neuver). The next ACC and IVC equipped vehicles in the
upstream direction can process this information and auto-
matically adapt their driving style to the situation or at least
display suggestions and warnings to the driver, which may
serve as a mean to homogenize traffic and thus increasing the
overall traffic throughput in a self-organized way [14]. On a
larger scale, the information passed along the IVC network
can be aggregated to produce live floating car data. In addi-
tion to the conventional cross-sectional data from loop detec-
tors, this information can be used by traffic-state recognition
and traffic forecast models thereby increasing their perfor-
mance and reliability.

In most applications, it is necessary to carry messages
over distances that are significantly longer than the device’s
broadcast range. This can be achieved by two ways: First, a
message can be passed to the following vehicle which then
passes it to its following vehicle, and so on. We call this
longitudinal hopping since the message always travels paral-
lel to the desired travel direction. Or, a vehicle may transfer
a message to a vehicle driving in the opposite direction. This
vehicle can store the message and continuously broadcast it
for a certain period of time while mechanically transporting
the message upstream. Although this message is of no use for
this relay vehicle, it might eventually jump back to the origi-
nal driving direction by a second transversal hop. We there-
fore call this method transversal hopping or “store and for-
ward.”
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The longitudinal hopping mode has the advantage of vir-
tually instantaneous message transmission, so the transmitted
information is always up-to-date. However, the reliability
may be low since a fully connected chain of IVC equipped
vehicles is needed. This restriction is overcome by the trans-
versal hopping mode where the successful transmission is
only a matter of time, but the information may be obsolete
when it finally arrives. There is, in fact, a third possibility of
intervehicle communication involving roadside units which
may act as a repeater between two vehicles which are too far
apart for direct communication. However, this concept re-
quires an extensive amount of stationary hardware.

Studies of intervehicle communication often focus on
technical details of the IVC devices and the communication
protocol resulting in complex message transmission models.
In contrast, a simplistic traffic model, if any at all, is then
used to simulate IVC systems. To our knowledge, only a few
studies exist that use more sophisticated and empirically
tested traffic models [15-18]. For a physicist, however, the
influence of the traffic dynamics (dynamics of nodes) on the
connectivity of the network is more interesting than the com-
munication details. Moreover, to our knowledge, investiga-
tions of IVC that are based on real vehicle trajectory data do
not exist.

In this paper, we will study the longitudinal hopping of
intervehicle messages on a freeway with the focus on how
far upstream a message is expected to travel in different traf-
fic situations and for different percentages of equipped ve-
hicles. To this purpose, we compare vehicle networks based
on real and simulated vehicle trajectory data with analytical
results assuming uncorrelated node positions [19]. We found
that long-ranged correlations of the distances arising from
traffic instabilities generally lead to a decrease of the connec-
tivity while short-ranged correlations resulting from the need
for a minimum gap lead to an increase. Remarkably, stochas-
ticity in the communication ranges increases the connectivity
as well.

We start by introducing the analytical model for randomly
distributed nodes and deterministic link transmission, which
we then adapt to our network. In Sec. III, we will compare
the model predictions with a network simulation based on
simulated (Sec. IIT A) and empirical trajectory data (Sec.
III B). In Sec. III C, we introduce stochastic transmissions
and investigate their properties, both analytically, and based
on the simulated trajectories. In Sec. IV, we discuss the im-
plications of our findings.

II. ANALYTICAL MODEL

In this section, we will adapt an analytical model for the
availability of messages to the IVC network. The model as-
sumptions are (i) longitudinal hopping along a linear chain,
(i1) a deterministic and instantaneous transmission mecha-
nism in which a message is available for receiving within a
certain radius r from the sender with certainty, but unavail-
able further away, (iii) randomly distributed nodes (IVC ve-
hicles) with a linear node density \, i.e., the distances Y
between two nodes are i.i.d. exponentially distributed sto-
chastic variables whose density is given by
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FIG. 1. (Color online) The figure shows a four-lane highway
with 50% IVC equipped vehicles. The longitudinal hopping mode
uses vehicles driving in the same direction to instantaneously trans-
mit a message, while with transversal hopping a relay vehicle driv-
ing into the opposite direction is used and the message is delivered
with time delay. In the analytical model for the longitudinal hop-
ping mode, since we are interested in vehicles upstream of the
sender only, the vehicle positions are measured antiparallel to the
driving direction such that the stochastic variables X; represent the
distance to the sender vehicle.

fry)=Ne™. (1)

Given traffic on m lanes with an average vehicle density p
per lane and a percentage of equipped vehicles « (which we
will refer to as penetration level), the node density is equal to
the longitudinal partial density of IVC-equipped vehicles,

N =map. (2)

Now, we consider an IVC vehicle at position xy=0, and a
chain of n further IVC vehicles in the upstream direction,
whose positions are given by the random variables X, i
=1,...,n (increasing in the upstream direction) (Fig. 1). A
vehicle beyond the end of the chain—with distance x>X,,
from the sender—that is not within the communication range
of the sender will be able to receive the message if it is
within the communication range r of the last vehicle at X,,,
and if this last vehicle has received the message (event A,),
i.e., the probability of availability is given by

P.(x)=P[(x-—X,<r)and A,]. (3)

We can rewrite the first condition in terms of the distance to
the last vehicle of the chain Y=x-X,. For any realization y
of Y with 0<y<r, the first condition is fulfilled and the
second is fulfilled with probability P .(x—y). Therefore, P (x)
transforms to an integral over all possible distances, where a
communication is not a priori excluded,

P.(x)= J r Ne™P (x - y)dy. (4)
0

From here it is straightforward to construct a delay-
differential equation for P (x). Taking the derivative

)

dP. _ fr )\e_)\ydPC(x - y)d
dx 0 dx

and simplifying this expression using partial integration and
Eq. (4), one obtains
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dP..
C=—NeMP.(x-7). (5)
dx

In order to solve this delay-differential equation, a complete
function [0,r]— R must be provided as initial condition. Ac-
cording to model assumption (ii), the message is always
available for x<r. At the distance x=r, however, the mes-
sage is available only if there is at least one additional relay
vehicle between the sender and the destination point x, which
is the case with probability [(fy(y)dy, resulting in

P () 1, x<r, ©)
(x) =

¢ 1—e™, x=r.

In order to obtain an analytical result, we insert the initial

condition into Eq. (5) and obtain

dP.
dx

==, r=<x<2r. (7)

With the initial condition P(r)=1-¢"" we obtain
Po()|,mpen,=1 =€ = Ne™M(x=1r). (8)
Similarly, for 2r<x<3r,
dP,
dx
with P.(2r)=1—e"(1+\r) from (8) yields
P.(x)|yyerez, =1 =M1+ Nx=1)]

- e‘zx’[[— MNx— 2r)]<1 + @)} .

=—Ne M1 -eMI1+Nx-1]

Generalizing from the previous steps to arbitrary x we obtain

o , [- N(x = kr) ]! Nx —kr)
P(x)=1-e k)‘[ h—1)! (1+ . )]
)

k=1
Here, m=|x/r] denotes the integer part of x/r. When scaling
distances to the communication range, x=rx, Eq. (9) de-
pends, as a function of X, only on the scaled partial density

N=\r. For reference, expression (9) can be transformed into
the equation given by Dousse et al. [19],

% [-Ae™M(x—kn)]

P =
k=0 k!

Mx = (k+ Dr]f

k! (10)

m—1
_ e—)\rz {_ Ae

k=0
We emphasize that Egs. (9) and (10) express the probability
of a message being available at a certain distance x from the
sender. For the transfer of information within the IVC net-
work, however, the relevant quantity is the distribution of the
physical length X of the unbroken chain of equipped vehicles
connected to a given IVC vehicle in the downstream direc-
tion. This can be seen by considering a local information that
can be captured by the IVC network only when an equipped
vehicle passes the location of the information source (the
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information, “rear end of a traffic jam,” would be an ex-
ample). For the driver of an IVC vehicle at an upstream
distance x from the source, this information is available if the
vehicle is part of a chain of length X > x.

In our model, the availability of the message always ex-
tends beyond the last connected vehicle by the communica-
tion range r. Thus, the probability Pg,,,(x) that the chain
length X is larger than x is given by

Pepain(x) = P(X > x) = P (x + 7). (11)

The assumed exponential distribution of node distances,
fy(y), may be wrong under certain conditions, e.g., a single-
lane road where vehicles keep a minimum distance to avoid
accidents. This can be overcome by postulating a com-
pressed node distance distribution

fy(3) =0y —s)\ e, (12)

Here, O(--+) denotes the Heaviside function, and the “hard-
core radius” s is an additional model parameter stating the
minimum distance between two nodes. To reflect the same
average node density as with the exponential distribution
fy(v), the parameter \’ is chosen to be (\™'=s)~! >\, result-
ing in lower probabilities for very large distances (thus the
term “compressed”). From this distribution we can derive a
delay-differential equation in the same manner as above,

dpP;
dx

=— )\’e‘)"("“)PC’,(x —r)=N'[P.(x) = P.(x-s)].

(13)

Since this equation is more complex than Eq. (5) and con-
tains an additional model parameter, we will focus on the
assumption of an uncompressed exponential distance distri-
bution in the rest of this paper.

In Fig. 2 we discuss some general characteristics of the
model. The probability of availability P(x) is equal to 1 for
x<r which corresponds to the initial condition (6). In the
interval r<x<2r, the probability decays linearly with the
distance, as stated in (8). As expected, the probability decays
slower when increasing the range r or the partial density A.
In fact, the decay (as a function of x/r) is controlled by the
product \r. Figure 2(c) illustrates Eq. (11) expressing the
difference between the probability of a message being avail-
able at a certain distance and the probability that the last
vehicle receiving the message is at a certain distance from
the sender. Furthermore, Fig. 2(c) shows the increased prob-
ability of availability P/(x) when using the compressed node
distance distribution (12). Finally, Fig. 2(d) gives the expec-
tation value (X) of the physical length of the communication
chain for different values of r and A.

III. COMPARISON TO SIMULATION RESULTS

In order to test the assumptions of the analytical model we
have performed several simulations of a longitudinal mes-
sage hopping with the following two-stage approach. First,
vehicle trajectories are obtained, either from the empirical
data provided by the next generation simulation community
(NGSIM) or by simulating the vehicle dynamics on a road
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FIG. 2. (Color online) Characteristics of the analytical model. (a) Availability of an intervehicle message for a fixed density of equipped
vehicles but different communication ranges r. (b) The same for fixed communication range but different equipped vehicle densities. (c)
Difference between the probability of availability, P.(x), and the probability P p,i,(x)=P.(x+7r) that the last vehicle receiving the message is,
at least, at a distance x from the sender. Notice that P,,;,(0) denotes the probability for any IVC connection at all. Also, the probability of
availability P/ (x) with the compressed node distance distribution f}(y) (s=20 m) is compared against P (x). (d) Expectation value (X) of the
chain length for different values of the communication range and the density of equipped vehicles [color (gray)-value coded; in the white

area the value exceeds 100 km which is not plotted].

section using a car-following model. Then, the communica-
tion is simulated by analyzing snapshots of the vehicle tra-
jectories for several times 7. From the NGSIM data (see Sec.
III B for details), the complete time interval of =30 min has
been sampled with a rate of 15 Hz, resulting in 25 500 snap-
shots. From the simulated data, snapshots have been taken
every 10 s resulting in 3750 snapshots of homogeneously
congested traffic, 4550 of stop-and-go traffic, and 5650 of
free traffic.

For each snapshot, the following stochastic experiment
has been repeated 100 times: First, the population of
equipped vehicles is determined by independently assigning
to each vehicle the property “is an IVC vehicle” with prob-
ability « (the penetration level). All other vehicles are dis-
carded. Then, a vehicle issuing a message is randomly cho-
sen from the last 10% of the remaining vehicles at the
downstream end. Iterating upstream over all vehicles, the
message hops to the next vehicle if and only if its distance to
the previous vehicle is less than r. Otherwise, the message
chain is broken and the chain length is output.

The final result of the simulation is the cumulative distri-
bution function F(x) of the chain length distribution, which
states the probability of a message not being received beyond
a given distance x from the sender vehicle. Thus, Py,in(x)
=1-F,(x) is the probability for a successful message propa-
gation over a distance x. In order to compare the result to the
theory, the mean vehicle density p is determined from the
trajectory data, and the expectation value of the partial den-
sity of IVC vehicles [which is, besides r, the only input
variable of Eq. (11)] is estimated by the relation \=ap.

A. IVC in simulated traffic data

We will now present the application of this method to
generated trajectory data, obtained by simulating a single-
lane road section of 52 km length with open boundary con-
ditions using the Gipps model [20]. Similar spatiotemporal
patterns have been obtained for other models [21,22]. At
position x,=50 km we added an on-ramp with a 100 m
merging zone inducing a bottleneck. By varying the ramp
flow and the inflow boundary conditions, three data sets with
different traffic situations upstream of the bottleneck were
obtained: Free traffic with an average density of
19.5 veh/km, congested traffic with density 49.5 veh/km
and no internal structure, and oscillatory congested traffic of
average density 33.7 veh/km exhibiting regular stop-and-go
waves with a wavelength of approximately 2 km.

Figures 3(a) and 3(b) show the resulting simulated con-
nectivities P,in(r) for free traffic assuming a range r
=200 m and various penetration levels a. For a<40%, we
found a good agreement with the analytical model (11),
while, for larger penetration levels, the observed connectivity
was higher than the analytical result. Notice that the apparent
“quantization” of the connectivity for small densities leading
to steps of width 1/p is a consequence of simulating identi-
cal vehicles with a deterministic acceleration rule. Since, for
such densities, there is very little interaction, the initial dis-
tance between the vehicles remains essentially unchanged.

In congested traffic [Figs. 3(c) and 3(d)], the situation is
similar with a good agreement for small «, while the theory
underestimates the observed connectivity for larger penetra-
tion levels. In quantitative terms, the deviation reaches the
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FIG. 3. (Color online) Probability of message reception at a certain distance from the initial sender in free traffic for =200 m and several
values of the penetration level a. Shown are the analytical values P,i,(x) (solid lines), and simulation results (symbols) based on
trajectories generated with the Gipps model for free traffic (upper row), homogeneous congested traffic (middle row), and stop-and-go traffic

(bottom row).

order of 0.05 for = 15% while, in free traffic, such discrep-
ancies are only observed for a«=40%. Remarkably, the situ-
ation is drastically different for stop-and-go traffic [cf. Figs.
3(e) and 3(f)] where, for sufficiently high penetration levels,
we observed lower reception probabilities compared to
theory, while, for penetration levels below 20%, they were
higher.

The findings can be understood in terms of correlations
that are observed in real (and simulated) traffic, but are ab-
sent in the analytical communication model. Obviously, one
source of correlations are repulsive interactions that are nec-
essary to keep a certain minimum “safe” distance to the lead-
ing vehicle. This leads to short-ranged correlations of the
distances between the vehicles decaying rapidly over a few
vehicle distances [23]. With respect to the theoretical expo-
nential distribution (1), this effect compresses the actual dis-
tance distribution towards the mean value 1/p. If the IVC
penetration level « is sufficiently high such that the mean
distance 1/\=1/(ap) of the equipped vehicles does not sig-
nificantly exceed the correlation length, the correlation car-
ries over to that of the equipped vehicles. If, in addition, the
mean distance satisfies 1/\ <r, the probability of distances
exceeding r thereby breaking the chain is reduced. Since the

correlation length and the assumed communication range r
=200 m are of the same order, both conditions are satisfied
simultaneously for sufficiently high penetration levels ex-
plaining the higher connectivities observed in this regime [cf.
also Fig. 2(c)]. If, however, the average node distance 1/\
exceeds the correlation length, the positions of the equipped
vehicles are nearly independent (even if that of all vehicles
are not), and the analytical model is approximately valid.
Since the repulsive force acts only between vehicles in the
same lane, the effect described above is expected to be
weaker for multilane traffic.

In order to understand the opposite effects of a lower
observed connectivity in the case of collective traffic insta-
bilities such as stop-and-go traffic, one needs to consider the
long-range correlations associated with them. In the low-
density areas, the local connectivity is lower than that at
average density which is assumed in the theory, and the mes-
sage chain breaks with a higher probability. Moreover, since
the linking of the chain is a nonlinear and multiplicative
process (the weakest link matters), the higher local connec-
tivities in the high-density areas cannot compensate for the
loss in the low-density areas. This mechanism is only effec-
tive if (i) the probability of a connected chain with several
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FIG. 4. (Color online) (a) Spatiotemporal vehicle density in the NGSIM data. (b) Distance distribution found in the first 20 minutes of
the data for @=0.1 and the corresponding exponential model. (c) Analytical and simulation results (r=200 m) for the first 20 minutes, and

(d) for the last 10 minutes of the observation interval.

links is sufficiently high, and (ii) the average distance 1/\
between two connected vehicles is significantly smaller than
the wavelength of the traffic waves (=2 km). Both criteria
are satisfied for higher penetration levels which is in agree-
ment with Fig. 3(f).

For low penetration levels, however, the typical chain
length is very short (or there is no valid connection at all),
and the above “weakest-link effect” is dominated by a statis-
tical “selection effect” acting in the opposite direction: When
selecting the sending vehicle randomly (as in the simulation),
the probability of this vehicle being in a high-density region
is comparatively high (simply because there are more ve-
hicles in high-density than in low-density regions). If, in ad-
dition, the typical chains are significantly shorter than the
size of one density cluster (a few 100 m), there is a high
probability that the whole chain is located inside the cluster,
and the weakest-link effect is not applicable. The resulting
net effect is a higher observed connectivity compared to the
theory explaining the findings of Fig. 3(e). Notice that even
the transition from a negative to a positive deviation of the
theoretical connectivity with respect to the data, observed for
a=0.2, can be understood in terms of these two counteract-
ing mechanisms.

B. IVC in empirical traffic data

In order to check the applicability of the model to real
traffic situations, we simulated a dynamical network based
on empirical trajectory data collected on the I-80 (Em-
eryville, California) in 2003 by the Berkeley Highway Labo-
ratory [24]. The trajectory data was obtained from video
footage recorded by six cameras mounted on a 97 m tall
building. The cameras captured 30 minutes of traffic on an

800 m segment of a six-lane highway with an on-ramp at the
upstream end and an off-ramp at the downstream end. We
extracted the four left-most lanes ignoring on-or off-ramp
traffic and used it as input for our IVC simulations. As in
Sec. Il A, we have carried out the simulations with r
=200 m, and various values for a (cf. Fig. 4). The sender
vehicle was randomly chosen from the most downstream re-
gion (width=100 m) ensuring that at least 700 meters of
measurement area were available for the hopping chain.

Figure 4(a) gives an impression of the vehicle densities in
the data and clearly identifies two different regimes: In the
first 20 minutes we see fairly homogeneous (dense) traffic
while, in the last 10 minutes, we observe a traffic jam cov-
ering the downstream one-half of the observation area. In
order to sample over comparable traffic situations, we have
split the data into these two regimes and carried out the
simulations on both datasets, separately.

Figure 4(c) shows the simulated connectivities for the first
20 minutes. As in Fig. 3(a) or 3(c), the simulated connectivi-
ties are consistent with, or only slightly above, the analytical
values (calculated for p=72.4 veh/km). For higher penetra-
tion levels (not shown), the difference becomes more signifi-
cant, similar, though not as pronounced, as in Figs. 3(b) or
3(d).

Analysis of the distance distribution for the first
20 minutes allows for a direct check of the assumed Poisson
distribution used in the derivation of the analytical model in
Sec. II. For each equipped vehicle, we have calculated the
longitudinal distance to the next equipped vehicle, regardless
of the lane. Figure 4(b) shows the resulting probability den-
sity for a=0.1. Although the correlations are expected to
become weaker for increasing number of lanes, the compres-
sion effect discussed in the preceding section clearly can be
seen. As a consequence, the probability of distances beyond
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r=200 m is lower than in the exponential distribution, which
is consistent with the increase of the simulated connectivity
shown in Fig. 4(c). Nevertheless, the discrepancy is remark-
ably low, in agreement with [16].

The simulation for the last 10 minutes of the data [Fig.
4(d)] reports mostly larger reception probabilities than theo-
retically predicted. However, for chain lengths exceeding
~2.5r (=500 m), there is a crossover to lower values com-
pared to theory. This is consistent with the network simula-
tions based on artificial trajectories of stop-and-go traffic,
Figs. 3(e) and 3(f). Moreover, it seems that the observed
crossover for long chains and higher penetration levels can
be understood in terms of the interplay between the weakest
link and statistical selection effects already discussed in Sec.
II A.

C. Stochastic message transmission model

A variety of causes can reduce or increase the actual
transmission range. In the following, we therefore relax the
assumption that the communication range r for each hop is
exactly given by r=200 m. Instead, we now model the com-
munication ranges as i.i.d. Gaussian distributed stochastic
variables, R~ N(r,0?) with unchanged mean r=200 m and
standard deviation =75 m.

Equations (4) and (6) can be generalized according to the
following reasoning. Given a distance x and the range R,
~N(r,0?) of the sender vehicle, a direct communication is
possible with probability 1—F(x) where F(x) denotes the cu-
mulative distribution function of the range. With the comple-
mentary probability F(x), however, one or more relays are
needed. The communication probability for this case is given
by summing, over all possible intervehicle distances y, the
probability P.(x—y) that the message is available at the lo-
cation of the relay vehicle, multiplied with the conditional
probability that the range R of the last relay is larger than y,

P.(x|Ry < x) = J Ne™P (x—y)P(R > y|Ry < x)dy.
0

(14)

Assuming independent ranges, P(R>y|R,<x)=P(R>Yy)
=1-F(y), the unconditional probability can be written as

P.(x)=1-F(x)+ F(x) fx e ™M1 = F(y)]P.(x - y)dy.
0

(15)

For nontrivial distribution functions F(y), there is generally
no possibility to obtain an explicit nonintegral expression.

We point to the fact that (15) does not include all ways of
transmission since non-Markovian effects generalizing the
network topology (it is no longer a linear chain) are ne-
glected. For example, even if the link between the nodes i
—1 and i is broken, a message may nevertheless be transmit-
ted from node i—2 to i. As a necessary condition, the range
R;_, of node i—2 must be larger than the range R,_; of the
neighboring node by at least the distance Y,, between the
nodes i—2 and i—1. This “bridging effect” becomes signifi-
cant if o\ is of the order of unity, or larger.
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FIG. 5. (Color online) Availability of the intervehicle message in
the analytic stochastic model assuming i.i.d. Gaussian distributed
communication ranges with a coefficient of variability o/r=0.2.

Figure 5 shows typical results for the stochastic model
(including the non-Markovian effects), in comparison with
the reference case of deterministic communication. The
kinks and discontinuities of the deterministic case are
smoothed out. Moreover, the availability in the stochastic
case compared to the deterministic situation tends to be
lower if there is a high probability for a direct communica-
tion (x<r), while it tends to be higher, otherwise.

Figure 6 shows the results for the three simulated trajec-
tory datasets in comparison with the deterministic analytical
results. In agreement with the above considerations, the
kinks are smoothed out. Remarkably, the simulated connec-
tivity generally turned out to be higher than in theory, with
the exception of stop-and-go traffic at high penetration lev-
els. For A\r>1, it is also significantly larger than the connec-
tivity simulated for fixed ranges (cf. Fig. 7). Nevertheless,
the correlations of the node positions typically influence the
results more strongly than the stochasticity of the communi-
cation range, at least for the displayed parameter settings.

IV. DISCUSSION

Intervehicle communication (IVC) is an interesting con-
cept, both theoretically and with respect to applications. It
can be described as a “double-dynamic” network where both
the nodes (the drivers or vehicles), and the links (messages
hopping from one vehicle to the next) obey their own dy-
namics. Since the transmitted information can be used to
change the driving behavior (thereby potentially increasing
the efficiency of traffic flow) [14,22], a feedback between the
two dynamic processes is possible.

Since the IVC technology is not yet implemented and no
large-scale empirical data can be produced, an understanding
of this type of network is also relevant for assessing the
performance of IVC designs under various conditions. Like
all technologies relying on local communication, IVC is only
effective if the node density exceeds a certain minimum. It
is, therefore, particularly relevant to investigate the order of
magnitude and the influencing factors of the corresponding
“penetration threshold.”

In this contribution, we have investigated the connectivity
of the longitudinal hopping mode where the network is
formed by vehicles driving in only one driving direction, and
the messages hop from vehicle to vehicle against the traffic
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FIG. 6. (Color online) Probability of message reception at a certain distance from the initial sender for the stochastic transmission model
based on simulated trajectories. The traffic situations are identical to the corresponding plots of Fig. 3. The lines represent the deterministic

analytical result P i,(x).

stream. We have analyzed networks resulting from three dif-
ferent models for the node dynamics (independently posi-
tioned nodes, trajectories resulting from simulations of a car-
following model, and real-world trajectory data), and two
different assumptions for the links (fixed and stochastic com-
munication ranges). For each type of network, we compared
the resulting connectivities as a function of the penetration
level and the type of traffic flow. Since analytical expressions
are available for the simplest network (independently posi-
tioned nodes, fixed broadcast ranges) it is particularly inter-
esting to compare the more realistic and complicated net-
work variants to this reference.

As a main result, we have found that the analytical model
agrees remarkably well with the simulated results of the
more realistic model variants. Deviations can be explained
by the assumptions made in the model. The assumption of
exponentially distributed distances made in the analytical
model neglects both the short-range correlations arising from
the necessity to keep a certain minimum distance, and the
long-ranged correlations caused by traffic instabilities such
as stop-and-go traffic. However, two factors greatly decrease
the consequences of these correlations. First, the (short-
ranged) correlations decrease with the number of lanes since

vehicle positions on different lanes are essentially indepen-
dent. Moreover, even on single-lane roads, the random dis-
tribution of the equipped vehicles leads to a significantly
reduced correlation of the relevant node positions (equipped
vehicles) with respect to that for all vehicles. When compar-
ing the communication models with stochastic and fixed

> 1

S 08
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5 0.6

c

2 04

3 stop-and-go

E 02 free N> T )
3 0 trafflc‘ -------- e

0 2 4 6 8 10
Spatial length of communication chain (units of r)

FIG. 7. (Color online) Direct comparison of the connectivities
using the deterministic transmission model (solid lines) and the sto-
chastic transmission model (dashed lines) for r=200 m and penetra-
tion level a=30%.
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ranges, we found that the stochastic transmissions generally
lead to a higher connectivity. This can be explained by the
non-Markovian property of this model allowing additional
links, but the effect is even smaller than that caused by the
correlations. We conclude that the analytic expressions of the
simplest model provide a good estimate, particularly for the
low penetration levels that are practically relevant for the
first stages of the introduction of IVC systems.

PHYSICAL REVIEW E 78, 036102 (2008)

Simulations with all models consistently suggest that lon-
gitudinal hopping leads to communications chains of less
than 0.5 km for a typical communication range of 200 m,
and realistic equipment levels below 10%. In contrast, IVC
systems using the alternative “store and forward” mode (us-
ing vehicles driving in the opposite direction to transport the
messages) can be effective for penetration levels as low as
1%—-2% [16], but the communication is not instantaneous.
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